MXNet review: Amazon's scalable deep learning

Amazon’s favorite deep learning framework scales across multiple
GPUs and hosts, but it's rough around the edges

By Martin Heller Contributing Editor, InfoWorld | Dec 14, 2016

http://www.infoworld.com/article/3149598/artificial-intelligence/mxnet-review-amazons-scalable-deep-
learning.html

Deep learning, which is basically neural network machine learning with multiple hidden layers, is all the rage—
both for problems that justify the complexity and high computational cost of deep learning, such as image
recognition and natural language parsing, and for problems that might be better served by careful data
preparation and simple algorithms, such as forecasting the next quarter’s sales. If you actually need deep
learning, there are many packages that could serve your needs: Google TensorFlow, Microsoft Cognitive
Toolkit, Caffe, Theano, Torch, and MXNet, for starters.

I confess that I had never heard of MXNet (pronounced “mix-net”) before Amazon CTO Werner Vogels noted
it in his blog. There he announced that in addition to supporting all of the deep learning packages I mentioned
above, Amazon decided to contribute significantly to one in particular, MXNet, which it selected as its deep
learning framework of choice. Vogels went on to explain why: MXNet combines the ability to scale to multiple
GPUs (across multiple hosts) with good programmability and good portability.

MXNet originated at Carnegie Mellon University and the University of Washington. It is now developed by
collaborators from multiple universities and many companies, including the likes of Amazon, Baidu, Intel,
Microsoft, Nvidia, and Wolfram. MXNet allows you to mix symbolic programming (declaration of the
computation graph) and imperative programming (straight tensor operations) to maximize both efficiency and
productivity.

The MXNet platform is built on a dynamic dependency scheduler that automatically parallelizes both symbolic
and imperative operations on the fly, although you have to tell it what GPU and CPU cores to use. A graph
optimization layer on top of the scheduler makes symbolic execution fast and memory efficient.

MXNet currently supports building and training models in Python, R, Scala, Julia, and C++; trained MXNet
models can also be used for prediction in Matlab and JavaScript. No matter what language you use for building
your model, MXNet calls an optimized C++ back-end engine.

KVStore Data Loading(IO)

(mxnet::KV5tore) (mxnet::Iterator]) . A iz build on top of B
T Heavily rely on the interfoce

Light dependency
Uised data structure for convenience
o
- - and interface congrstency
MDArray B | Symbuolic Execution | Symbaol Construction Can be replaced by alternatives

(mxnet:NDArray) (mxnet:Executor) (mxnet:-Symbol)
T T

User facing madules

Operators

(mxnet::Operator) System Modules
1 ; o

Storage Allocator Runtime Dependency | Resource Manager
{mxnet::Storage) : Engine (mxnet::Engine) (mxnet::ResourceManager)

http://www.infoworld.com/author/Martin-Heller/
http://www.infoworld.com/article/3149598/artificial-intelligence/mxnet-review-amazons-scalable-deep-learning.html
http://www.infoworld.com/article/3149598/artificial-intelligence/mxnet-review-amazons-scalable-deep-learning.html
http://www.infoworld.com/article/3127397/artificial-intelligence/review-tensorflow-shines-a-light-on-deep-learning.html
http://www.infoworld.com/article/3138507/artificial-intelligence/review-microsoft-takes-on-tensorflow.html
http://www.infoworld.com/article/3138507/artificial-intelligence/review-microsoft-takes-on-tensorflow.html
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://torch.ch/
http://mxnet.io/
http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html
http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html

An overview of the MXNet architecture: NDArrays are representations of tensors. The KVStore is a distributed
key-value store for data synchronization over multiple devices.

MXNet features

In the original paper on MXNet, the authors explain why they combined the symbolic declaration of a
computation graph, which allows more opportunity for optimization of neural network solutions, and imperative
programming of tensors, which allows for more flexibility, more natural variation of parameters, and easier
debugging. They went to some effort to bind their API to multiple programming languages and to implement
autodifferentiation to derive gradients.

The authors consider the MXNet API a superset of what’s offered in Torch, Theano, Chainer, and Caffe, while
offering more portability and support for GPU clusters. They consider MXNet similar to TensorFlow but with
the ability to embed imperative tensor operations.

The MXNet architecture, shown in the figure above, has five user-facing modules and five system modules. The
SimpleOp module, which is not shown in the diagram, has been split off from the Operator module, which is
shown. That doesn’t really matter to a programmer, however. The Operator module includes operators that
define static forward and gradient calculation. SimpleOp includes operators that extend to NDArray operators
and symbolic operators in a unified fashion.

Looking at the Python API, there are six high-level interfaces:

e The Module API is a flexible high-level interface for training neural networks.

e The Model APl is an alternative, simple high-level interface for training neural networks.

e The Symbolic API performs operations on NDArrays to assemble neural networks from layers.
e The IO Data Loading API performs parsing and data loading.

e The NDArray API performs vector/matrix/tensor operations.

e The KVStore API performs multi-GPU and multihost distributed training.

The MXNet shared back-end library is written in C++ with the standard C++ library for efficiency and
portability. The language embeddings are written in the target languages Python, R, and Scala, with some shims
in C++ for the R APL

A fair chunk of the engine code provides support for Nvidia CUDA general-purpose GPUs. For the highest
performance, build and run MXNet to use the CUDA SDK and CUDA Deep Neural Network (CUDNN)
library. As the MXNet authors noted when comparing their implementation with competitors on the convnet-
benchmarks, most deep neural network computations are spent on the CUDA/CUDNN kernels. At the time the
original paper was written, TensorFlow used an older version of CUDNN than the other packages and,
therefore, ran slower; that has since been corrected.

When researching scalability for that paper, the MXNet authors ran a Googl.eNet benchmark (a 22-layer
incarnation of the Inception convolutional neural network for image object detection and classification) on one
and 10 Amazon EC2 g2.8xlarge instances, and they showed a superlinear speedup. When Amazon tested a
MXNet implementation of the related Inception v3 algorithm on P2.16xlarge instances for varying numbers of
GPUs, the results showed a scaling efficiency of 85 percent of the number of GPUs in use, as shown in the
figure below.

Those are impressive results. The p2.16xlarge instances have 16 Nvidia Tesla K80 GPUs (eight boards), and
Amazon ran the scaling test out to 128 GPUs. That’s cluster performance.

https://github.com/dmlc/web-data/raw/master/mxnet/paper/mxnet-learningsys.pdf
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
http://research.google.com/pubs/pub43022.html

I haven’t tried to reproduce either experiment. Your mileage may vary and will depend heavily on your neural
network design (the more layers, the longer it takes) and choice of optimizer (some converge better than others
for specific algorithms and data sets).

125
3500

000 103 Speedup on 128 GPUs r 100
'E' 2500 T
3 s
& = 8
o [
E 2000 -
— [
= B
=
- (=
5 7 4

1500
£ il |
— (]

1000

= 15
s00
2 [. .
1 2 4 -] 1E 12 B4 128
Number of GPUs (using P2.16xlarge)
. MMEt Thioughput MXMéet Speediup — |deal Speedup
Amazon

Amazon tested an Inception v3 algorithm implemented in MXNet on P2.16xlarge instances and found a scaling
efficiency of 85 percent.

MXNet installation

MXNet supports training on Linux, OS X, Windows, and Docker; it also supports prediction from JavaScript in
a browser and on an 10S or Android device using an amalgamated C++ package.

I did my initial installation on a MacBook Pro with a Nvidia GeForce GT 650M GPU and both CUDA and
CUDNN installed. Based on previous experience with TensorFlow, I initially built MXNet for the CPU, not the
GPU.

On a Mac, you first use Homebrew to install some prerequisites, then clone MXNet from GitHub, copy the Mac
makefile, and build the shared library. After some initial fumbles, it took me about eight minutes to compile and
link the library. Once the library has been built, you need to install the language packages you want to use. If
you want to use Jupyter notebooks with Python to run the MXNet samples, you need to install Jupyter as well,
although the MXNet instructions don’t mention that.

Using the Amazon Deep Learning AMI, which has MXNet and four other deep learning packages pre-installed
along with all of the required languages and the Anaconda Python library package (including Jupyter), can save
you the effort of building the packages from source or even downloading them. Using the older Amazon G2
(K520 GPUs), newer P2 instances (K80 GPUs), or Microsoft Azure NC instances (K80 GPUs) will enable you
to run MXNet on serious floating point processors. IBM SoftLayer also offers servers with K80 GPUs on

http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html
https://aws.amazon.com/marketplace/pp/B01M0AXXQB

monthly and hourly terms. The Google Cloud will offer VM instances with K80 GPUs and even faster P100
GPUs in 2017.

Running MXNet

The “getting started” exercise for MXNet is (surprise!) a simple network for training a classifier on the MNIST
hand-drawn numerals data set, one of the easiest standard machine learning problems. This exercise covers how
to train a multilayer perceptron model using Python, R, Scala, and Julia. The multilayer perceptron and a more
accurate convolutional solution (LeNet) are covered in a Python tutorial. You’ll find the source code for this
tutorial in Jupyter notebook form within the mxnet-notebooks/python/tutorials folder of the MXNet repository
that you downloaded as part of the MXNet installation.

I ran the notebook locally on my MacBook Pro, only to have it fail at the import mxnet statement. After
smacking myself on the forehead for making a newbie omission (aided and abetted by confusing
documentation), I installed the Python language module with the setup.py script in the python directory of the
repository. I used the current-user option,

python setup.py develop —user

When I restarted the MNIST notebook, it failed at a call to mx.viz.plot network. Alas, the documentation
hadn’t mentioned the need to install Graphviz. I tried to install Graphviz with pip, which seemed like the
obvious thing to do, but the notebook failed again with a message saying that it couldn’t find the Graphviz
executables. | had no idea what was wrong, so I Googled the error message, found many reports of similar
problems, and guessed about which of the multiple answers (none of which had feedback) might be correct for
my system. After tossing yarrow stalks I reinstalled Graphviz with Homebrew, then the MNIST notebook
worked and displayed the network graph.

http://mxnet-tqchen.readthedocs.io/en/latest/get_started/index.html
http://mxnet.io/tutorials/python/mnist.html
http://mxnet-tqchen.readthedocs.io/en/latest/how_to/build.html

2 1 | (@ localhost 8 BEA nosebooismnkst inyrb ok oL@ E- = w &
:rjqutEr ST L Chickpaiar 3 minutes 400 [Liddwid Shanded] wd

Flé Bl Miew laet Call Maend Hag | Pyt d O

B +# E B + 4+ HEB O bwicoms 2 B Cellockae

Muitilayer Perceptron

LS el Ay ayern. For & fy-contacing yer, BEsume e inpul mati X has sl o X0 m. Ten § ouiouts maire I
munx;mtimmummm Thin by Pals Bt Eairaimanties, this s 3 b el emariris W et thad i 0 | b it B, Bt compiti
the cutpuls by

Y=WX+b

Tt tpul of B Sully-connictd ysr i oRen Tesd NS BN BSALON liyer, which perfonms Slrrarial-wish Sosnabons. This wioely known Tunction & Sgmod,
which nas foem f{x) = 1] + ¢*). Nowndiys peopis A0 w4 Simper unction called rk () = max{(,).

T et fully-oonnected lrper ofton has the fddon Siee esouais i T numer of classas in he dolaset. Then we sinck a softmax layer, which map Bhe input info
T y BOOPE. Agmin e nput X Fas sive g X m. and 1, s the -5 row. Then the i-th row of the outpu s

ExplE) eApli.)
| E “Wv EI m:'

[hefine the mutiayer perceptron o MKXNet & stmightioreasd, which has shown as foflowng.

In (&) & Create & place bolder variabls for the ispur dsts
drts = Ex.EyE variahle] data’)
Flatten che dats from -0 shaps jhagch_sire, num_channel, wideh, bejghejf
inep F=D [batch pise, ous chasse]=widrhessight)
dibis = Ex.dyE. Platten|data=-dita)

The firse fullp-connecred laysr

fel = ex.aym.FullyConnected|data=data, nase="fcl', ses hlddes=13i)
Appiy relu to the owtput of the first Fully-conssscted laper
actl = px.sym.Activaclon|data=fol, same='relul’, act_type="rela")

The second fally-connscted [ayer and the scoordieg sctivaetion fusction
fel = ma.sym. FullyConnscted{dstasact]l, names"0o0@', num hiddes = 6&)
actl = mx.aym. Activation[deta=fcd, same='relsl’, act_type="zals®)

The thrid fully-connectsd laysr, note that che kidden sire should be 10, which 18 the nusber of unigoe digits
fel = mx.aym, FullyConnected|data=actl, pase="fol', mes hiddes=10)

The softsex acd Josw layer

mlp = mx.sym Softmapdutputidata=fc), name="softmax’)

Fe visualise the network structsmm with oucput alsa [the becoh_nise in (guaned, |
shaps = [dsbs”™ ¢ (baveh _sdiws, 1, 38, IB}}
mx.viz, plot_network{sysbol=mlp, shape=shape)

oat{dli

MXNet comes with a Python tutorial on classifying the MNIST data set with a multilayer perceptron model.
Here we have used the Graphviz package to plot the network defined with calls to the MXNet symbolic module.

A few cells later, training the multilayer perceptron model succeeded and took approximately one second per
epoch.

e jupyter MINIST Last Chackpsint: 22 miruths sge ulcasvsd)

Fin Eit Wiew Inmert Cal Karnsl Halp “iotebook aved Python 2 O
B % ¥ @& B + & N B C Mokdown : B Cellfookbar
ow both the network definition and data ferators ane ready. We can start training.
In (5} dmport logging
logging.getLoggar) .aetLeval | logging . DEBIG)

madel = mx.nedel.PesdForvard|

symbol = mlp,
num_apoch = 10,

network structone

pomber of data pagses for training

learning rate = 0.1 # Isarning rate of SGD

]
modal . £it(
¥=train_iter,

training data

eval data=val iter, # velidation data

bateh_end callback = mx.callback.Spesdopeter(batch_ size, 200) # owepot progress for esch 200 dats batches

}

INFOiroottStart training with [cpu(l)]

IRFO:rootiEpochi D) Batch (200] Speed: 50670.61 samples/sec Train-accuracy=>0.110800
INFOhroot1Epoch[0) Batch [400] Gpeed: &3709.95 samples/sec Train-accuracy=0.109600
INFO:root:Epoch| 0] Batch [600) BSpeed: 48373.%1 samples/sec Train-accuracy=0.1331%0

INFO: root i Epochi D)
INFO: oot Epoch[0]
INFO: rootEpoch[0)
IHFO: root i Epochi 1]
INFOrrootiEpochf 1)
INFO:root:Epochil]
IRFO: root i Epochi 1)
INFO: root:Epoch]l])
INFO:root:Epoch[1])

Resetting Data Iterator
Time cost=l.268
Validation-accuracy=0.233600
Batoh [200)] Spesd: 52936.79%
Batch [400] Gpeed: 49482.68
Batch |60D] BSpeed: 48798.10
EResetting Data Iterator
Time cost=1.197
Validaticn-accuracy=0.846600

samples/sec
samples/sec
sanples/sec

Train-acouracy=0.414550
Train-accuracy=>0.742104
Train-accuracy=0.8217500

INFO:rootiEpoch2) Batch [100] Speed: 42275.96 samples/sec fraln-accurasy=0.866000
INFD:root:Epoch{2) Batch [400] Gpood: 41983.35% samples/sec Train-accuracy=0.888350
INFO:root:Epoch(2] Batch [600]) Speed: 46591.81 samples/sec Train-accuracy=0.%01800
INFOirootiEpoch(2] Resetting Data Iterator

INFOroottEpoch[2) Time costw=i.384

INFOsrootiEpoch(2] Validatlon-accuracy=0.914100

INFOirootiEpochi 1) Batch [200] Speedr 47764.06 samples/sec frain-accuracy=0.921450
INFO:root:Epoch| 3] Batch [400]) BSpeed: 47368.11 samples/sec Train-accuracy=0.92885%0

INFO:roottEpoch] 3§
INFO: roat 1 Epoch] 3]
INFO:root:Epoch] 3]
INFO: root i Epochid |

Batch [600] Spesd: 49805.39
Resetting Data Iterator
Tima cost=l.248
Yalidation-accuracy=0.939900

samples fsec

Train-accuracy=0.933100

INFOiroot iEpoch[4) Batch [200] Epeed: 51279.28 samples/ses Train-accuracy=0.343950
INFO:root:Epochf 4] Batch [400] GSpesd: 49814.56 samples/sec Train-accuracy=0.348350
IRFO:roct iEpochi4) Batch [600] Speed: 49061.808 samples/sed Train-accuracy=0.348800
INFO1root1Epochfd] Resetting Data Iterator

INFO:root:tEpoch{4)] Time cost=1.197

INFO:rootiEpoch(4) Validatlion-sccuraey=0.955600

IRFOroot1Epochi) Batch [200] GSpeed: 51200.00 samples/sec Train-accuracy=0.954600
INFO:root:Epoch[5] Batch [400]) Speed: 45810.13 samplas/sec Train-accuracy=0. 356650
INFO:rootiEpoch[5] Batch [600] Speed: §3944.0) samples/sec Train-accuracy=0.958550
INFO:rootEpoch{ 5] Resetting Data Iterator

INFO:rToot:Epoch[5] Time cost=1.1948

INFO:rootiEpochi 5] Validatlon-accuracy=0.960700

INFO:root1Epoch[§) Batoch [200] GSpeed: 41948.85 samples/sec Train-acouracy=0.36 3450
INFO:rootiEpoch[6] Batch [400]) Speed: J8452.%7 samples/sec Train-accuracy=0.963700

INFOsrootiEpoch(6]
INFO:rootEpoch[6)
INFO: roct tEpoch[6]
INFO: root i Epoch| 6)
INFO:root 1 Epoch] 7]
INFO:root i Epoch] 7)
IHFO: root i Epoch] 7]
INFO:roottEpoch] 7]
INFQ:roottEpoch]7)
IRPO: Foot Epach] 7]

Batoh [600] Speed: 40314.79%
Resetting Data Iterator
Tine cost=1.498
Validatien-accuracy=0. 364900
Batch [200] Speed: 47859.94
Batch [400) Speed: 46564.03
Batch [600)] Spesd: 48721.80
Fesetting Data Iterator
Time comt=1.263
Validation-acsnracy=0. 967500

samples/ses

samples/sec
samples/sec
samples/sec

Train-accurasy=0.366050

Train=accuraocy=0.369804
Train-accuracy=0.968650
Train-accuracy=0.370650

INFO:root:Epoch8)] Batch [200] Spesd: 458408.10 samples/sec Train-accuracy=0.9737040
INFO:rootiEpoch{ 8] Bateh [400] GSpeed: 50454.65 samples/sec Train-accuracy=0.972750
INFO:roottEpoch| 8] Bateh [600] Speed: 49187.41 samples/sec Train-aecuracy=0.373450

INFO:root:Epochi @)
IRFO:rootiEpochiB)
INFO1rootEpoch| 8]

Eesatting Data Iterator
Time cost=1.209
Validation-acouracy=0. 369700

Multilayer perceptron network training with MXNet. As you can see, each epoch took about one second, and
after nine epochs the validation accuracy was 96.97 percent.

The tutorial continues with another model, the LeNet Convolutional Neural Network (CNN), which failed with
the message “Compile with USE_CUDA=1 to enable GPU usage.” I pretty much knew from working with
TensorFlow that compiling for CUDA wouldn’t work on my Mac, but I tried it anyway and got a message that

the Nvidia CUDA compiler driver NVCC is not compatible with Xcode 8. (Nvidia has been promising to
correct this for at least a month.)

To cover all the bases, I switched the active compiler to Xcode 7.3.1, which is compatible with NVCC but
caused compile errors. I switched back to Xcode 8, restarted the notebook, commented out the line setting the
GPU context, and ran the CNN on the default CPU:

model = mx.model.FeedForward (
ctx = mx.gpu(0),
symbol = lenet,

num_epoch = 10,
learning rate = 0.1)
model.fit (

X=train iter,

eval data=val iter,

batch end callback = mx.callback.Speedometer (batch size, 200)
)

That worked, but was quite slow. It took about three minutes per epoch and about half an hour for the entire run.
It didn’t seem to be using more than one core, based on the Mac Activity Monitor. Apparently the default
MXNet context runs on CPU core 0.

= JUP)‘tE‘r IMNiSt Last Checipaint: 2 hours ago lauosaved) P

Filia Edit Wi It Call Ml Halp # |Pyhond O

B |+ H B C Code .

O

Output]::.0]

¥ f B o+

N
poaied]

0]

Ind filter with Ix stride__halves height and
width dimensions while keeping all channels
intact

In [14)% data = mx.symbol.Variable| 'data’)
tirst conv layer
convl = mx.sya.Convolution{data=data, kermal={5,%), num_filter=10)
tanhl = mx.sym.Activation|data=convl, act_type="tanh”)
pooll = mx.sym.Pooling{data=tanhl, pool type="max”, kerpal={2,3), stride={2,32}))
gecond conv layer
convd = fmx.syn.Convalution(data=pooll, kernal=(8,5), nom filter=50)
tanhi = mx.sym.Activation|data=gconvl, act_type="tanh")
pooll = mx.sym.Pooling|data=tanh?, pool type="max”, kernel={2,1), stride={2,2))
firat fulle layper
flatten = mx.sym.Flatten{data=pooll)
fel = mx.symbol.FullyConnected(data=flatten, num hidden=500)
tanhl = mx.sym.Activation{data=fcl, act_type="tanh”)
second fulles
fe2 = px.sym,FullyConnected{data=tenhd, num hidden=10)
#F gortmax loss
lenet = mx.syn.Sodtmaxfutpuk{data=fc?, name="poftmax’)

Moie that Lelet is more comiplex than the provious multilayer percepiron, 50 wa use GPU instead of CPU for training,

In [15): model = mx.model.FesdForward(

oty = mx.gpu(d), # use GFY 0 for trainiog, others are sams sa befora
sysbol = lanet,
nue_spoch = 14,
learning rate = 0.1)

model ., £it|
¥=train_iter,
eval data=val iter,
batch_snd_callback = mx.callback.Speedometer(batch_size, 200)

i

AL R b P S

B aE AR SRR

IMFO:rectiEpoch 6] Validation-accuracy=0.985400

INFO1roottEpoch|7] Batch [200] Speed: 311.24 samples/sec Train-accuracy=0.989800
INFO:root:Epoch(7] Batch [400) Speed: 315.69 samples/sec Train-accuracy=0.988600
1NFOroot tEpoch] 7] Batch [600) Speed: 115.04 samples/ssc Train-accuracy=0.989150
INFO:roottEpoch|7] Resetting Data Iterator

IRFOirootiEpoch(7] Time cost=191.468

INFOrroot (Epoch] 7] Validation-accoracy=0.986300

INFO:root:Epoch(8] Batch [200) Speed: 317.07 samples/sec Train-accuracy=0.391800
INFOi1rootiEpoch|8] Batch [400] Speed: 331.00 samples/sec Train-accuracy=0.989850
INFO:root:Epoch(8] Batch [600) Spasd: 331.91 samples/sec Train-accuracy=0.%30100
INFO:rootiEpoch(B] Hesetting Data Iterator

INFO:rootiEpoch|B)] Time cost=182.112

IKFO:rootiEpoch(B] validation-accuracy=0.986700

1NFOiroot tEpoch|] Batch [200] Spesd: 130,34 samples/sec Train-sccuracy=0.993200
INFO:roottEpoch(®] Batch |400] Gpesd: 332.28 samples/sec Train-accuracy=0.991250
INFOiroot iEpoch|®) Batch [600] Speed: 321.75 pamples/sec Train-accuracy=0.991400
INFOiroot:Epoch|9] Resetting Data Iterator

IRFO:rootiEpoch(®]
INFO1rootiEpoch| 3]

Time cost=181.156
Validation-accuracy=0.987500

Miol® that, with the same hyper-paramaters, LeiNet achieves 98, 7% validation eccuracy, which improves on the previous multilayer perceptron sccuracy of
06.6%.

LeNet convolutional model training on MNIST data. The time per epoch on one core was about three minutes,
and the validation accuracy after 10 epochs was 98.75 percent.

I naively tried to run the LeNet training on all eight cores, passing a list for the context:

ctx = [mx.cpu(0), mx.cpu(2), mx.cpu(3), mx.cpu(4), mx.cpu(5), mx.cpu(6),

mx.cpu(7)]

mx.cpu(l),

That sped up the training, but only by a factor of three, and the convergence wasn’t as good running in parallel:

In (11]: model = mu.modal.FesdForwvard|

Fotx = me.gpuil), # gse GPY 0 for training, others are same as before
cty = [mx.cpu(f).mx.cpa(l) me.cpufi) mx.cpu(d),.mx.cpa(d);me.cpu(s) mx.cpu(6) mu.cpai{7)]; #use all § cores
symbal = lenet,

num_epoch = 10,

learning rate = 0.1)
model . £it|

K=trai rl._itﬂ Es

oval_datawwval_iter,

bateh_end callback = mi.callback.Speedometar (bateh siza, 200}
I

uuuuuuuuuu) ssem s W e —
IH‘E‘ﬂ:rmt:E;m 6] validation=accuracy=0.3984200

INFOiroot:Epoch|7) Batch (100) Spead: B92.67 samples/sec Train-accuracy=0.988400

INFO:root:Epoch|[T] Batch [400] Gpeed: 50%.67 samples/sec Train-accuracy=0.589750

INFOiroot:Epoch|T) Batch (600) Spead: 314.26 samples/sec Train-accuracy=0.%88150

INFO:rootEpoch|T] Resetting Data Iterator
INFOiroot:Epoch[7] Time cost=66.437
INFO1root1Epoch| 7] Validation-accuracy=0.%84 700

INFO:root:Epoch(8] Batch [200] Spasd: 922.53 samples/sec Train-accuracy=0. 590150
INFOrroot1Epoch|[8] Batch [400] Speed: 514.57 samples/sec Train-accuracy=0.991050
INFO:root:Epoch|[8] Batch [600] Spesd: 305.85 samplas/sec Train-accuracy=0.389800

IRFOroot i Epoch|8) Besatting Data Iterater
INFO:root:Epoch|[8] Time cost=65.65%
INFO: oot iEpoch|8) Validatlon-accuracy=0.9385500

INFD:root:Epoch|[9] Batch [200] Spessd: 922.5%8 samples/sec Train-accuracy=0.991650
INFOsroot:Epoch(9) Batch [400] Spesd: 920.3) samples/sec Train-accuracy=0.9%92450
INFO:rootiEpoch[9] Batch [800] Gpeed: 900.63 samples/sec Train-accuracy=0.591100

INFO: rooe i Epoch| 9] Resetting Data Iterator
INFO:root1Epoch|9] Tima cost=65.688
INFOiroot:Epoch(¥] Validation-accuracy=0.985700

Mote that, with the same hyper-parametars. LeMet achioves 98.7% validation accuracy, which improves on the previous multilayer perceptron accuracy of
B6.6%.

Using eight CPU cores, we only get a 3X speedup over using one core, and the final validation accuracy is not
quite as good.

I tried this again with only four cores:

ctx = [mx.cpu(n) for n in range(4)], #use 4 cores

That gave me roughly the same training speed as eight cores, with a final validation accuracy closer to the one-
core result. I don’t know why exactly, but I think the limit on core usage has to do with the number of layers in
the model. The variation in results does bring home the fact that ML training is a random process. The subject
of running MXNet in parallel is documented, but I haven’t found an answer to the question of optimum
parallelism.

You’ve probably gotten the idea by now that that the MXNet documentation leaves something to be desired. I
hope that will be one of the items that Amazon helps to improve, now that it has adopted the project.

MXNet tutorials and models

In addition to MNIST digit classification, the computer vision MXNet tutorials in Python cover image
classification and segmentation using convolutional neural networks (CNN); object detection using Faster R-
CNN; neural art; and classification of ImageNet using a deep CNN. In R, only two of these have been
implemented; in Scala, only the MNIST tutorial is shown.

For natural language processing (NLP), the Python tutorials are for character-level long short-term memory
(LSTM); text classification using a CNN; and noise-contrastive estimation (NCE) loss with an LSTM model. In
R, there’s a different character language model. There is no Scala example for NLP.

http://mxnet.io/how_to/multi_devices.html
http://mxnet.io/how_to/multi_devices.html
http://mxnet.io/tutorials/index.html

There are two Python examples for speech recognition; a Python generative adversarial network trained on
MNIST; three Python unsupervised machine learning tutorials; and one R supervised machine learning tutorial.
There are additional models in the example folder of the MXNet repository, mostly in Python.

Overall, I have to agree with the authors of MXNet that their deep learning framework is similar to TensorFlow
in many respects. As for differences, while MXNet lacks the visual debugging available for TensorFlow in
TensorBoard, it offers an imperative language for tensor calculations that TensorFlow lacks.

The MXNet “model zoo” is not yet as complete as TensorFlow’s, and the MXNet documentation needs some
work. The multi-GPU scaling performance reported by Amazon is exciting, however. Given the complexity and
computational cost of training deep learning models, this might be enough to attract deep learning practitioners
to MXNet even in its present state.

Models and Ease of . Ease of Overall
InfoWorld . Documentation Performance
Scorecard algorithms development (20%) 20%) deployment Score
(25%) (25%) (10%) (100%)
MXNet v0.7 8 8 7 10 8 8.2
At a Glance

o« MXNet v0.7
InfoWorld Rating
Learn more
on Distributed Machine Learning...

This portable, scalable deep learning library combines symbolic declaration of neural network
geometries with imperative programming of tensor operations.

Pros
o Scales to multiple GPUs across multiple hosts with scaling efficiency of 85 percent
o Excellent development speed and programmability
o Excellent portability
o Supports Python, R, Scala, Julia, and C++
o Allows you to mix symbolic and imperative programming flavors

Cons

Documentation still feels unfinished
Few examples for languages other than Python

http://mxnet.io/

