
TensorFlow shines a light on deep learning

Google's open source framework for machine learning and neural

networks is fast and flexible, rich in models, and easy to run on CPUs

or GPUs

By Martin Heller , Contributing Editor, InfoWorld | Oct 5, 2016

http://www.infoworld.com/article/3127397/artificial-intelligence/review-tensorflow-shines-a-light-on-
deep-learning.html

What makes Google Google? Arguably it is machine intelligence, along with a vast sea of data

to apply it to. While you may never have as much data to process as Google does, you can use

the very same machine learning and neural network library as Google. That library,

TensorFlow, was developed by the Google Brain team over the past several years and released

to open source in November 2015.

TensorFlow does computation using data flow graphs. Google uses TensorFlow internally for

many of its products, both in its datacenters and on mobile devices. For example, the Translate,

Maps, and Google apps all use TensorFlow-based neural networks running on our smartphones.

And TensorFlow underpins the applied machine learning APIs for Google Cloud Natural

Language, Speech, Translate, and Vision.

Data flow graphs are directed acyclic graphs that describe a computation for TensorFlow.

Nodes in the graph represent mathematical operations, while the graph edges represent the

multidimensional data arrays (tensors) that flow between them. This flexible architecture lets

you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device

without rewriting code. In addition to the library, TensorFlow includes an interactive program

for displaying data flow graphs, TensorBoard.

The principal language for using TensorFlow is Python, although there is limited support for

C++. The tutorials supplied with TensorFlow include applications for handwritten digit

classification, image recognition, word embeddings, recurrent neural networks, sequence-to-

sequence models for machine translation, natural language processing, and PDE (partial

differential equation)-based simulations.

http://www.infoworld.com/author/Martin-Heller/
http://www.infoworld.com/article/3127397/artificial-intelligence/review-tensorflow-shines-a-light-on-deep-learning.html
http://www.infoworld.com/article/3127397/artificial-intelligence/review-tensorflow-shines-a-light-on-deep-learning.html

This is Google’s animated illustration of how tensors flow from node to node through the edges of a data flow

graph.

TensorFlow currently runs on Ubuntu Linux, MacOS, Android, iOS, and Raspberry Pi, using Python 2.7, 3.4, or

3.5. Nvidia CUDA GPUs are supported on Linux and MacOS but not required. Google supplies Docker images

for TensorFlow both with and without GPU support.

Google offers TensorFlow as a service as part of the Cloud Machine Learning Platform, along with Cloud

Dataflow. The Cloud Machine Learning Platform is currently in limited preview and considered to be in alpha

test. TensorFlow is also available for use in Cloud Datalab, a beta cloud service and Docker image that is based

on Jupyter (formerly IPython) notebooks.

TensorFlow features

Google touts six key advantages for TensorFlow: deep flexibility, true portability, the ability to connect

research and production, autodifferentiation of variables, language options, and the ability to maximize

performance by prioritizing GPUs over CPUs. Let’s try to understand what these mean and why they are

important.

http://www.infoworld.com/article/3100454/cloud-computing/first-look-google-cloud-machine-learning-soars.html
https://datalab.cloud.google.com/

Deep flexibility. The major point in this area is that a data flow graph isn’t limited to representing neural

networks. While there is a lot of support for neural networks in TensorFlow, you are free to use libraries on top

of TensorFlow or write your own, in Python or C++. Google provides a good example in the form of a partial

differential equation (PDE) solver. This flexibility comes from the carefully layered architecture of the library.

True portability. Because TensorFlow supports CPUs or GPUs and desktop, server, container, and mobile

computing platforms, you have a lot of options about where you run it. There are limits, however. Some of the

training tasks you might want to perform with TensorFlow require significant hardware performance if you

want them to converge in a reasonable amount of time, such as a multi-CPU machine with CUDA GPUs or a

Google Tensor Processing Unit (TPU), which is a custom ASIC. (No, mere mortals can’t use TPUs -- yet. But

Google is exploring what would make sense.)

For example, a relatively simple convolutional model for classifying handwritten digits from the MNIST data

set takes half an hour to train on a single 2.6GHz Intel Core i7. If you train the same model with one or more

recent Nvidia GPUs and the latest CUDA SDKs and deep neural network libraries, it will go much faster -- how

much faster depends on the number and level of the GPUs and the efficiency of the libraries. If you train the

same model on a TPU, it will take a few minutes. By the same token, it is reasonable to run predictions from a

TensorFlow model on an Android or iOS device or a Raspberry Pi, but not to train the model on a mobile

device.

Connect research and production. This point flows from portability, but it’s an improvement on previous

practice. Not long ago, researchers designed machine learning models in programs intended for individual use

(Matlab and Mathematica come immediately to mind, but there are many), then the models had to be rewritten,

trained, and deployed using scalable technologies (for example, Python and C++ programs). By contrast,

TensorFlow supports researchers developing algorithms, as well as product teams training models and

deploying them for customers at scale, all with the same code.

Autodifferentiation. Many training algorithms rely on gradient descent in one form or another, often stochastic

gradient descent (SGD). A gradient is a vector of partial derivatives, so before you can implement a gradient-

based algorithm, you need a way to differentiate one variable with respect to all the other variables of interest.

TensorFlow does that for you, letting you move on to more interesting problems. The derivative computation

extends your graph, and you can see that when you view your graph in TensorBoard. This capability is not

unique to TensorFlow, but it’s very nice to have.

Language options. TensorFlow is currently at the Model T stage of its language options: You can work in any

language you want, as long as it’s Python. OK, that’s an exaggeration. There’s a documented limited subset of

the API that can be used from C++ and an undocumented Go language directory in the repository that appears

to implement a Go API on top of the C++ API.

Maximize performance. Google says, “TensorFlow allows you to make the most of your available hardware.

Freely assign compute elements of your TensorFlow graph to different devices, and let TensorFlow handle the

copies.” I haven’t done this yet myself; it’s covered in the Distributed TensorFlow and Using GPUs tutorials.

Unless you have your own datacenter, you might want to consider deploying TensorFlow servers and clusters in

one of the public clouds.

Installing TensorFlow

I installed TensorFlow and all its dependencies on a MacBook Pro running OS X El Capitan, using the Python

2.7 pip and easy_install utilities, as well as the Homebrew installation manager. I also checked out a few

TensorFlow source code repositories from GitHub. Though my MacBook has a supported Nvidia GPU, I ran

into trouble trying to get the GPU version of TensorFlow to work and wound up installing the slower CPU

https://www.tensorflow.org/versions/r0.10/how_tos/distributed/index.html
https://www.tensorflow.org/versions/r0.10/how_tos/using_gpu/index.html#using-gpus

version. Because of conflicts in dependencies, it took me about seven tries; I eventually used the --ignore-

installed flag to get pip to complete the process. (My woes related to an incompatibility between the Xcode

8.0 beta I was running and the CUDA compiler. Your sailing will likely be smoother.)

I installed Jupyter Notebooks as well. Jupyter is not a dependency of TensorFlow but is used by several of the

TensorFlow samples. I ran into errors doing that with pip, but was able to succeed using easy_install.

I suspect that I’ll be able to upgrade to the GPU version in the future once I (and the three vendors) resolve

version conflicts among Xcode, the CUDA SDK and CUDA neural network libraries, and TensorFlow.

There are four other methods to install TensorFlow: Virtualenv, Anaconda, Docker, and from source code.

Virtualenv gives you an isolated Python environment. Once you are at an active Virtualenv command line, you

can install TensorFlow with pip. That extra step might be worth the effort if you have version conflicts between

TensorFlow dependencies and dependencies of other Python programs you have installed.

Anaconda is a large Python distribution with lots of numerical and scientific packages and its own environment

system. Once you have Anaconda installed, you can either install TensorFlow with pip or Conda. Again, the

extra step might be worth the effort -- and if you do it, you should install the latest Python 3 versions of

Anaconda and TensorFlow.

Installing TensorFlow in Docker is simple and quick, and you get an isolated, virtualized environment. You also

get a Jupyter Notebook server that you can access from a browser, along with a few preconfigured notebooks.

The disadvantage of using Docker on your own computer is that it will only get part of your CPU and RAM,

which means that iterating a neural network model or something else complex can take a long time. On the

other hand, you can run a Docker image in the cloud and get as much in the way of computing resources as you

are willing to rent.

Building TensorFlow from sources creates a current pip wheel; you then install that instead of pulling a prebuilt

wheel downloaded from Google Cloud Storage. Using the most current source code from the repository may fix

some bugs for you; it may also introduce new bugs. Caveat coder.

Running TensorFlow

Assuming that you are using Python from the command line, a very basic interactive TensorFlow session looks

like this:

$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>> exit()

To run a command-line sample, you might do the following:

$ python -m tensorflow.models.image.mnist.convolutional

The -m switch in the line above means that Python should load and run its argument as a library module script.

You could also navigate to the correct directory and omit the switch. By the way, this script is the one that took

about a half-hour to complete on my MacBook Pro (CPU-only).

If you prefer to run a Jupyter notebook, navigate to the directory where your notebook resides, and from the

command line type jupyter notebook. You should see a directory come up in your browser, from which you

can pick an existing notebook, such as the DeepDream notebook in the figure below, or you can create a new

notebook for your own work.

Jupyter Notebook displaying a TensorFlow DeepDream example. Functions with tf prefixes belong to

TensorFlow, as do functions with sess prefixes. Functions with np prefixes belong to NumPy.

You can also get a Jupyter notebook by running a TensorFlow Docker image. The command line is as follows:

docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow

The -p switch exports the first port listed from Docker to the second port listed on the host. Then you can open

the notebooks that reside inside the Docker image from a browser tab on your host by browsing to

localhost:8888 if the image is running locally, or port 8888 of the correct IP or DNS address if it is running

remotely.

In a Jupyter notebook or other interactive session, you may use the tf.InteractiveSession() constructor

instead of tf.Session(). The subsequent code is a little less verbose.

This Jupyter notebook is one of the three supplied in the TensorFlow Docker image. This code is doing a basic

gradient descent optimization of a neural network learning from a small dataset.

Besides the library and samples, TensorFlow includes a suite of visualization tools called TensorBoard, as

shown in the figure above. You can use TensorBoard to visualize your TensorFlow graph, plot quantitative

metrics about the execution of your graph, and show additional data like images that pass through it. I've only

recently begun with TensorBoard, but it looks to be a nice tool once your TensorFlow sessions are configured to

log the necessary information. You can try it out online even without having TensorFlow installed.

TensorBoard displaying the graph of a TensorFlow calculation. We have zoomed in on several sections to

examine the details of the graph.

TensorFlow demos, tutorials, and models

There’s so much to learn about TensorFlow that, for the purposes of this article, all I can do is briefly discuss

the materials that Google presents and outline a path through them. By the way, Google is actively working on

adding more tutorial material and structuring it better.

You can get a feel for neural networks on the web, without installing anything, at the TensorFlow Playground.

This example doesn’t use TensorFlow, however. Consider it to be background to build your intuition about

neural networks.

https://www.tensorflow.org/versions/r0.10/how_tos/summaries_and_tensorboard/index.html#tensorboard-visualizing-learning
https://www.tensorflow.org/tensorboard/index.html
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.89974&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&co

Most developers should start learning TensorFlow by checking out its code repository and model repository.

The next step is to install TensorFlow and validate your installation, while reading the introductory materials

and going through at least one MNIST tutorial, which shows you ways to recognize handwritten characters.

Then by all means go through the other tutorials, which show you the basic mechanics of TensorFlow and

tf.contrib.learn, a high-level API for TensorFlow. Then, depending on your interests, you can dive into

image processing, language and sequence processing, and non-machine-learning applications (Mandelbrot set

and a PDE simulation).

Then you can work through all the how-to articles, which will get you to the point where you should be able to

understand the contributed models in the “model zoo” and the TensorFlow articles in the Google Research blog.

Finally, you can start writing your own TensorFlow Python code, using the API for reference, and copying code

freely from the various samples and models. You might find that working interactively in Jupyter notebooks

helps, or you might prefer working in a programming editor or IDE with good Python language support.

If at any time you discover that you don’t quite have the background for the TensorFlow material, there are a

number of free online courses on machine learning and related topics, five of which are discussed in an article

by my colleague Serdar Yegulalp.

After living and breathing TensorFlow for about a week, I’m almost ready to write my own TensorFlow code --

although I’ll probably adapt someone else’s model, rather than start from scratch. TensorFlow is not an easy nut

to crack, requiring knowledge of statistics, optimization, machine learning, and neural networks, as well as

fluency in Python, all before you even start learning the framework. The architecture of TensorFlow is quite

flexible once you grasp it, though I freely admit that I didn’t quite get it for the first couple of days.

I’ve said elsewhere that TensorFlow ranks about 9 out of 10 on the software geekiness scale. I still think that’s

true, but that doesn’t mean it’s out of reach. You don’t need to be a grad student in machine learning to learn

and use TensorFlow, although I’m sure that would help. There’s plenty of documentation, and it’s pretty good,

if perhaps more than you’ll want to go through right away, and arranged in a manner that requires you to jump

back and forth among different articles.

I rate TensorFlow excellent for its wide selection of algorithms and models. If you are a machine learning

researcher, you’ll appreciate the smorgasbord. If you simply want to solve a practical machine learning

problem, you should be able to find at least one model you can use or adapt.

TensorFlow seems to perform as well as anything out there for neural network and deep learning training,

despite an early benchmark that falsely indicated otherwise because of differing GPU libraries. If you need to

do a lot of machine learning on large data sets, however, you’ll want to use computing resources with GPUs or

TPUs, and perhaps a server or cluster.

If you’re serious about doing machine learning programming and you like to write Python, TensorFlow is a

very good choice, although it has several competitors, including Caffe, CNTK, Theano, and Torch. On the other

hand, if you simply need to process general text, speech, or images, or to perform language translations, the

Google, HPE, and Microsoft clouds all offer applied machine learning services that may already be trained to

do what you need.

InfoWorld

Scorecard

Models and

algorithms

(25%)

Ease of

development

(25%)

Documentation

(20%)

Performance

(20%)

Ease of

deployment

(10%)

Overall

Score

(100%)

TensorFlow 9 8 9 10 8 8.9

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/models
https://www.tensorflow.org/versions/r0.10/get_started/index.html
https://www.tensorflow.org/versions/r0.10/tutorials/index.html
https://www.tensorflow.org/versions/r0.10/how_tos/index.html
https://github.com/tensorflow/models
https://research.googleblog.com/search/label/TensorFlow
https://www.tensorflow.org/versions/r0.10/api_docs/index.html
http://www.infoworld.com/article/3115334/artificial-intelligence/5-free-e-books-for-machine-learning-mastery.html
http://www.infoworld.com/article/3115334/artificial-intelligence/5-free-e-books-for-machine-learning-mastery.html
http://www.infoworld.com/article/3120996/application-development/bossie-awards-2016-the-best-open-source-application-development-tools.html#slide15
http://www.infoworld.com/article/3120996/application-development/bossie-awards-2016-the-best-open-source-application-development-tools.html#slide16
http://www.infoworld.com/article/3120996/application-development/bossie-awards-2016-the-best-open-source-application-development-tools.html#slide19
http://www.infoworld.com/article/3120996/application-development/bossie-awards-2016-the-best-open-source-application-development-tools.html#slide20
http://www.infoworld.com/article/3100454/cloud-computing/first-look-google-cloud-machine-learning-soars.html
http://www.infoworld.com/article/3063099/artificial-intelligence/review-hpes-machine-learning-cloud-overpromises-underdelivers.html
http://www.infoworld.com/article/3041307/analytics/review-azure-machine-learning-is-for-pros-only.html

r0.10

At a Glance

 TensorFlow r0.10

InfoWorld Rating

TensorFlow is a flexible and scalable open source framework for machine learning and neural networks.

Pros

o Wide variety of models and algorithms

o Excellent performance on hardware with GPUs or TPUs

o Excellent support for Python

o Good documentation

o Good software for displaying graphs

Cons

o Difficult to learn

o Bare-bones support for C++

